Category: Machine Learning

Revolutionizing the Road: How Hyperspec AI’s Fleet Learning Approach is Changing the Game for Detecting Lane Merges on the Highway

Automating the process of data annotation has been a long-standing challenge in the field of machine learning, especially when it comes to detecting lane merges on the highway. The traditional approach of manually labeling data is not only costly in terms of time and resources, but it also hinders the ability to quickly detect lane…
Read more

Navigating the complexities of coordinate frames: A guide to understanding the differences in Three.js, ROS, and Unreal Engine

Coordinate frames are an important aspect of robotics and computer graphics, as they determine the position and orientation of objects in 3D space. However, different platforms and software libraries use different conventions for their coordinate frames, which can lead to confusion and errors when working with multiple systems. Three.js, ROS, and Unreal Engine are all…
Read more

Unsupervised Machine Learning and Speed Ups in Labeling

Unsupervised machine learning is a type of machine learning that involves training a model on a dataset without providing it with labeled examples. Instead, the model is asked to discover the underlying structure of the data on its own. One popular technique for unsupervised machine learning is clustering, which involves grouping similar data points together.…
Read more

Why Overfitting Data is a Handicap for ADAS Deployment

ADAS enabled vehicles are most commonly driven on highways and main roads for a number of reasons. One reason is that these types of roads tend to have less complex driving scenarios compared to residential areas or side roads. Highways and main roads often have fewer intersections and more predictable traffic patterns, which can make…
Read more

Integrating Federated Learning into CVAT & MLFlow

Federated learning is a machine learning technique that enables the training of models on decentralized data, without the need for the data to be centralized in one location. Instead, data is distributed across a number of different devices or edge devices, such as smartphones or IoT devices, and the model is trained by aggregating updates…
Read more

WebGPU and Federated Learning with FedML, a Killer Combo

WebGPU is a new technology that allows developers to take advantage of the power of the GPU (graphics processing unit) in modern browsers. It allows for faster and more efficient processing of complex tasks, including machine learning algorithms. One of the key benefits of WebGPU is its ability to support federated learning. Federated learning is…
Read more

Training a Model in MLFlow from CVAT label data

CVAT (Computer Vision Annotation Tool) is an open source tool developed by Intel that allows users to label and annotate images and video data for training machine learning models. MLFlow is an open source platform for managing the end-to-end machine learning lifecycle. It provides tools for tracking experiment runs, organizing code, and reproducing runs, among…
Read more

Integrating CVAT annotation into MLFlow

CVAT (Computer Vision Annotation Tool) is an open-source annotation tool for computer vision tasks that allows users to label and manage large datasets quickly and efficiently. Integrating CVAT with an MLFlow framework can streamline the data labeling process and make it easier to track and analyze the performance of your machine learning models. Here is…
Read more

Dimensionality reduction and how it helps reduce the search space by leveraging known information

Removing dimensions or making invariant features is a technique used to reduce the search space in a problem by eliminating certain variables or making them irrelevant. This can be especially useful in LiDAR slam, which has a 6Dof search space (x, y, z, roll, pitch, yaw). By reducing the dimensions, the number of permutations in…
Read more

Data balancing to remove data bias, do a deep dive on different approaches

Data balancing is the process of ensuring that a machine learning dataset is representative of the real-world population from which it is drawn. This is important because if a dataset is biased, then the machine learning model that is trained on that dataset will also be biased. Bias in machine learning models can lead to…
Read more

How data structures impact time complexity of code

Data structures are the foundation of efficient algorithms and play a crucial role in determining the time complexity of a piece of code. Time complexity refers to the amount of time it takes for an algorithm to complete, and it is a measure of how the runtime of an algorithm grows as the input size…
Read more

Techniques to Boost True Positive Rates using Independent Combinatorics

True positive rates, or the proportion of positive cases that are correctly identified, are an important consideration in many areas. One way to boost true positive rates is to utilize independent combinatorics, a set of techniques that involve combining multiple independent pieces of information or evidence to make a decision. Here are some specific techniques…
Read more

Improving Model Performance from 99.9% to 99.999999%

Artificial intelligence (AI) has come a long way in recent years, with many industries adopting it to improve efficiency and productivity. However, there is always room for improvement, and one area where AI can be further enhanced is in terms of accuracy. Currently, many AI systems have an accuracy rate of around 99.9%, which is…
Read more