Tag: fleet learning

Revolutionizing the Road: How Hyperspec AI’s Fleet Learning Approach is Changing the Game for Detecting Lane Merges on the Highway

Automating the process of data annotation has been a long-standing challenge in the field of machine learning, especially when it comes to detecting lane merges on the highway. The traditional approach of manually labeling data is not only costly in terms of time and resources, but it also hinders the ability to quickly detect lane…
Read more

Uncovering ADAS Failure Cases: The Importance of Edge Vision Analytics and Fleet Queries in Vehicle Safety

Collecting failure cases from a fleet of L3 ADAS vehicles is a crucial task in ensuring the safety and reliability of these systems. With the increasing use of advanced driver assistance systems (ADAS) in vehicles, it is important to have a reliable and efficient method for collecting and analyzing data from these systems. One way…
Read more

Roadmap Compression via Streamlining MLOps Infrastructure and its Impacts on ADAS programs

Advanced Driver Assistance Systems (ADAS) are becoming increasingly important in the automotive industry as they offer a wide range of features that enhance the safety and comfort of the driving experience. However, the development and deployment of ADAS systems can be a complex and time-consuming process. Traditional hand-coded algorithms and feature engineering, while they have…
Read more

Why Overfitting Data is a Handicap for ADAS Deployment

ADAS enabled vehicles are most commonly driven on highways and main roads for a number of reasons. One reason is that these types of roads tend to have less complex driving scenarios compared to residential areas or side roads. Highways and main roads often have fewer intersections and more predictable traffic patterns, which can make…
Read more

Integrating Federated Learning into CVAT & MLFlow

Federated learning is a machine learning technique that enables the training of models on decentralized data, without the need for the data to be centralized in one location. Instead, data is distributed across a number of different devices or edge devices, such as smartphones or IoT devices, and the model is trained by aggregating updates…
Read more

Techniques to Boost True Positive Rates using Independent Combinatorics

True positive rates, or the proportion of positive cases that are correctly identified, are an important consideration in many areas. One way to boost true positive rates is to utilize independent combinatorics, a set of techniques that involve combining multiple independent pieces of information or evidence to make a decision. Here are some specific techniques…
Read more